Integration of external information in genetic evaluations

T.J. Pitkänen¹, M. Koivula ¹, I. Stranden¹, G.P. Aamand², E.A. Mäntysaari¹

August 24, 2018

¹Natural Resources Institute Finland (Luke)

²NAV Nordic Cattle Genetic Evaluation

Introduction

- · Prerequisite of implementation of single-step GBLUP
 - Holstein reference population is largely based on Eurogenomics bulls
- In this presentation a method for integrating external information (ie. Interbull EBVs) into national genetic evaluation is presented
- The method is demonstrated using 305d protein yields from Nordic Holstein evaluation data

Demonstration of approach using Nordic evaluation data

Two multitrait evaluations for 305d protein yields

- DFS including all data (represents Interbull)
 - 4,567,594 cows with obs, 8,517,853 obs, 7,762,484 animals in pedigree
- DNK including only observations made in Denmark
 - 3,026,231 cows with obs, 5,787,266 obs, 4,506,156 animals in pedigree

The aim is to include information from DFS model to DNK model

Demonstration of approach using Nordic evaluation data

Two multitrait evaluations for 305d protein yields

- DFS including all data (represents Interbull)
 - 4,567,594 cows with obs, 8,517,853 obs, 7,762,484 animals in pedigree
- DNK including only observations made in Denmark
 - 3,026,231 cows with obs, 5,787,266 obs, 4,506,156 animals in pedigree

The aim is to include information from DFS model to DNK model

Demonstration of approach using Nordic evaluation data

Two multitrait evaluations for 305d protein yields

- DFS including all data (represents Interbull)
 - 4,567,594 cows with obs, 8,517,853 obs, 7,762,484 animals in pedigree
- DNK including only observations made in Denmark
 - 3,026,231 cows with obs, 5,787,266 obs, 4,506,156 animals in pedigree

The aim is to include information from DFS model to DNK model

Models and parameters

The following 3 parity model was used for **DNK** observations

prot1	=	hy1	ys1	cg1	ANIMAL1
prot2	=	hy2	ys2	cg2	ANIMAL2
prot3	=	hy3	ys3	cg3	ANIMAL3
procs	_	пуз	yss	cgs	ANIMALS

(h ²		
35.7	0.88	0.81	0.36
26.4	25.0	0.96	0.29
22.8	22.6	22.1	0.26

Variance, covariance, correlation

Model for **DFS** has each 9 traits with genetic correlation 1 between countries. The effects are the same.

Combined BV

 External information is available as single combined EBV defined as

$$\mathbf{EBV_{CMB}^{DFS}} = 0.5EBV_1^{DFS} + 0.3EBV_2^{DFS} + 0.2EBV_3^{DFS}$$

- Corresponding reliability R2DFS CMB
- Similarly, **EBV**^{DNK}_{CMB} and **R2**^{DNK}_{CMB} for DNK model
- Genetic variance for the combined BV is 27.2
- · Residual variance for weighted observation 33.8
- → Heritability is 0.45

Selecting bulls to be blended

Bull were considered to have enough information in DFS to be blended to DNK if:

- $R2_{CMB}^{DFS} R2_{CMB}^{DNK} > 0.05$
- $R2_{CMB}^{DFS} > 0.85$
- · At least 1 daughter in Denmark
- Birth year of bull > 1990

In total 364 bulls were selected. They had 11102 daughters with obs in DNK.

Steps for blending

Blending approach has three steps

- 1. Calculation of amount of external information for selected bulls
- Calculation of pseudo-observations for bulls
- 3. Running evaluation model with pseudo-observations

Amount of extra information compared to DNK evaluation is obtained using **reversed reliability approximation**. Input data:

- R2DFS for bulls having external information in DFS model
- R2DNK for bull daughters in DNK evaluation
- Pedigree pruned to have only selected bulls and their DNK daughters
- As result, effective record contribution (ERC) is obtained for all animals in pruned pedigree.

Amount of extra information compared to DNK evaluation is obtained using **reversed reliability approximation**. Input data:

- R2DFS for bulls having external information in DFS model
- R2^{DNK} for bull daughters in DNK evaluation
- Pedigree pruned to have only selected bulls and their DNK daughters
- As result, effective record contribution (ERC) is obtained for al animals in pruned pedigree.

Amount of extra information compared to DNK evaluation is obtained using **reversed reliability approximation**. Input data:

- R2DFS for bulls having external information in DFS model
- R2^{DNK} for bull daughters in DNK evaluation
- Pedigree pruned to have only selected bulls and their DNK daughters
- As result, effective record contribution (ERC) is obtained for all animals in pruned pedigree.

Amount of extra information compared to DNK evaluation is obtained using **reversed reliability approximation**. Input data:

- R2DFS for bulls having external information in DFS model
- R2^{DNK} for bull daughters in DNK evaluation
- Pedigree pruned to have only selected bulls and their DNK daughters
- As result, effective record contribution (ERC) is obtained for all animals in pruned pedigree.

Amount of extra information compared to DNK evaluation is obtained using **reversed reliability approximation**. Input data:

- R2DFS for bulls having external information in DFS model
- R2^{DNK} for bull daughters in DNK evaluation
- Pedigree pruned to have only selected bulls and their DNK daughters
- As result, effective record contribution (ERC) is obtained for all animals in pruned pedigree.

Pseudo-observations for bulls are **deregressed proofs** (**DRP**) obtained using deregression. Input data:

- EBV_{CMB} for bulls to be blended
- EBV^{DNK}_{CMB} for daughters of blended bulls
- ERC from previous step is used as a weight for bulls and daughters
- · Same pedigree as for ERC calculation

Pseudo-observations for bulls are **deregressed proofs** (**DRP**) obtained using deregression. Input data:

- EBV_{CMB} for bulls to be blended
- EBV^{DNK} for daughters of blended bulls
- ERC from previous step is used as a weight for bulls and daughters
- · Same pedigree as for ERC calculation

Pseudo-observations for bulls are **deregressed proofs** (**DRP**) obtained using deregression. Input data:

- EBV_{CMB} for bulls to be blended
- EBV^{DNK}_{CMB} for daughters of blended bulls
- ERC from previous step is used as a weight for bulls and daughters
- Same pedigree as for ERC calculation

Pseudo-observations for bulls are **deregressed proofs** (**DRP**) obtained using deregression. Input data:

- EBV_{CMB} for bulls to be blended
- EBV^{DNK}_{CMB} for daughters of blended bulls
- ERC from previous step is used as a weight for bulls and daughters
- · Same pedigree as for ERC calculation

Pseudo-observations for bulls are **deregressed proofs** (**DRP**) obtained using deregression. Input data:

- EBV_{CMB} for bulls to be blended
- EBV^{DNK}_{CMB} for daughters of blended bulls
- ERC from previous step is used as a weight for bulls and daughters
- Same pedigree as for ERC calculation

3. Running evaluation model with pseudo-observations

 DNK evaluation model needs to be modified to allow DRP as an observation and ERC as weight for bulls to be blended

Blending model

```
prot1 = hy1 ys1 cg1 ANIMAL1
prot2 = hy2 ys2 cg2 ANIMAL2
prot3 = hy3 ys3 cg3 ANIMAL3
BULLDRP = - - 0.5*ANIMAL1 0.3*ANIMAL2 0.2*ANIMAL3 !weight=ERC
```

NOTE: Single observation for a bull, **BULLDRP**, contains external information for all three traits in DNK model.

Results

Correlations between DFS and DNK before and after blending for blended bulls

	Lact 1	Lact 2	Lact 3	Combined
Before blending	0.85		0.85	
After blending	0.98	0.97	0.95	0.98

Results

Correlations between DFS and DNK before and after blending for blended bulls

	Lact 1	Lact 2	Lact 3	Combined
Before blending	0.85	0.85	0.85	0.86
After blending	0.98	0.97	0.95	0.98

Plots of combined EBVs for blended bulls

Conclusions

Blending

- · Blending method works reasonably well
- Relatively straightforward to implement with MiX99 software
- · Requires multiple steps

Further development

- Blending of external information to test-day models
- · Test how blending works in practise with low heritable traits

